Arkesys

Plans d'expériences - Criblage, factoriels, surfaces de réponses et optimaux

Par Arkesys

Objectifs

  • Expliquer le vocabulaire spécifique à la méthode des plans d’expériences
  • Cerner les difficultés et les contraintes de mise en œuvre des plans d’expériences
  • Choisir et construire un plan d'expériences correspondant à une problématique identifiée
  • Construire, expliquer les caractéristiques, les avantages et les inconvénients des plans suivants :
    • Plans de criblage (Plackett-Burman, Carrés latins, …)
    • Plans factoriels complets et fractionnaires
    • Plans surfaces de réponses (Box-Behnken, Central composite, …)
    • Plans optimaux
  • Appréhender la démarche des plans optimaux
  • Interpréter les résultats issus de l’analyse d’un plan d’expériences et valider les travaux issus d'une démarche expérimentale

Programme

Identifier les objectifs d'une démarche expérimentale

  • Pourquoi réaliser des expériences :
    • Expliquer,
    • Quantifier
    • Modéliser un phénomène
  • Définition d'une expérience
  • Erreurs associées à la répétition des essais
    • Réplique d’un essai
    • Dispersion inter-répliques
    • Reproductibilité
    • Erreur de mesure

Maîtriser le vocabulaire associé à la démarche expérimentale

  • Les acteurs en jeu
    • Les paramètres influents – les facteurs (le monde des X)
    • Les grandeurs d’intérêt – les réponses (le monde des Y)
  • Comportement des facteurs
    • Les facteurs actifs
    • Les facteurs passifs contrôlés
    • Les facteurs passifs subis
  • Types de facteurs
    • Facteurs continus
    • Facteurs discrets
  • Domaine expérimental
    • Domaine expérimental réalisable,
    • Domaine expérimental réaliste
    • Niveaux, modalités
  • Les réponses

Comprendre les risques associés à la pratique expérimentale

  • Risque lié à l’erreur expérimentale
    • Erreurs sur la maîtrise des facteurs
    • Erreurs sur la mesure
    • Solutions apportées
  • Risque lié à l’erreur statistique
    • Conséquence de voir un effet à tort
    • Conséquence de ne pas voir un effet à tort
    • Solutions apportées
  • Confusion entre effets
    • Accuser un effet à la place d'un autre effet
    • Conséquences de la confusion dans une démarche expérimentale
    • Recherche de causes erronées
    • Diagnostics des confusions (matrice de corrélations, VIFS)
    • Exemples de confusions
    • Solutions apportées

Effets de facteurs

  • Calcul d'un effet d’un facteur
  • Représentation graphique d'un effet
  • Représentation quantitative d'un effet

Interactions entre facteurs

  • Définition d’une interaction
  • Bonne et mauvaise interprétation d’une interaction
  • Sens physique d’une interaction
  • Représentation graphique

Mise en œuvre de plans de criblage

  • Objectifs des plans de criblage
  • Caractéristiques, avantages et inconvénients
  • Problématiques étudiées et réponses apportées par les plans de criblage
  • Exemples de plans de criblage (Plackett-Burman, …)
  • Construction de plans de criblage
  • Analyses statistiques de plans de criblage
  • Pareto et effets simples des facteurs
  • Analyse de la variance sur plans de criblage

Mise en œuvre de plans factoriels

  • Objectifs des plans factoriels
  • Caractéristiques, avantages et inconvénients
  • Problématiques étudiées et réponses apportées par les plans factoriels
  • Exemples de plans factoriels
  • Plans complets
  • Plans fractionnaires
  • Notions de confusions
  • Notions de résolutions
  • Analyses statistiques de plans factoriels
  • Pareto des effets (simples et interactions)
  • Effets simples des facteurs et interactions
  • Analyse de la variance sur plans factoriels
  • Utilisation de tables Taguchi (si souhaité)

Mise en œuvre de plans surfaces de réponses

  • Objectifs des plans surfaces de réponses
  • Caractéristiques, avantages et inconvénients
  • Notions de modélisation
  • Différences entre les modélisations de type Anova et régression
  • Effets quadratiques
  • Problématiques étudiées et réponses apportées par les plans surfaces de réponses
  • Exemples de plans surfaces de réponses
    • Box-Behnken
    • Central composite
  • Construction et analyses de plans surfaces de réponse

La démarche des plans optimaux

  • Contexte d'utilisation des plans optimaux
  • Démarche de construction de plans optimaux
  • Notions de modèles exploratoires
  • Recensement des contraintes
  • Points candidats
  • Calcul du nombre d'essais minimum
  • Validation d'un plan optimal
    • Coefficient D
    • Coefficient G
  • Construction et analyses de plans optimaux

Outils statistiques de dépouillement des plans d'expériences (significativité des effets)

  • Notions de comparaisons de moyennes
  • Analyse de la variance et régression
  • Principes généraux de l'Anova
  • Objectifs de l'analyse de variance
  • Hypothèses nulle et alternative de l'ANOVA
  • Interprétation de la table d'ANOVA (somme des carrés, degrés de liberté, ...)
  • Acceptation ou rejet de l'hypothèse nulle
  • Epuration du modèle (conservation ou exclusion des facteurs et des interactions influentes)
  • Tests de comparaison de moyennes multiples
  • Regroupements de moyennes
  • Traitements graphiques des analyses
  • Tests de significativité des effets

Outils statistiques de dépouillement des plans d'expériences (validation d'un modèle prédictif)

  • Rappel des objectifs d'une modélisation de type régression
  • Principes de base de la modélisation par la régression
  • Les différents modèles de régression
  • Analyse de la qualité du modèle
    • Coefficient de détermination
    • Estimation de l'erreur
  • Analyse des résidus et recherche des valeurs suspectes
  • Outils de prédiction
    • Prévision des valeurs individuelles
    • Prévision des moyennes
    • Intervalles de confiance de prévision
  • Traitement graphique des résultats
  • Outils d'optimisation
    • Recherche optimum unique
    • Recherche d'optimums multiples
    • Courbes de désirabilité

Ouverture sur les plans de mélange (si demande)

  • Les différents types de plans
  • Spécifier les limites des constituants
  • Spécifier des contraintes linéaires
  • Génération des plans
  • Analyses de

Pédagogie

  • Explications théoriques suivies de pratiques guidées puis mises en autonomie
  • 1 vidéoprojecteur par salle
  • 1 ordinateur par stagiaire
  • Exercices de synthèse et d’évaluation
  • Evaluation de fin de stage

Formations de la même catégories (5)

Top Finance
Etfs et etps: fonctionnement et guide d’utilisationPar Top Finance
  • Définir les ETPs et appréhender les développements du marché
  • Maîtriser les techniques de réplication et de gestion utilisées par les ETPs, tout en comprenant les risques associés
  • Maîtriser les stratégies d’investissement à base d’ETPs dans une allocation d’actifs
  • Maîtriser les démarches de sélection d’un ETPs
IB Formation
Analyse statistique avancée avec RPar IB Formation

L’analyse statistique des données est une des compétences requises pour mettre en oeuvre des projets Big Data. Selon la nature des données manipulées et le type d’analyses souhaitées, il est parfois nécessaire de recourir à des techniques d’analyses avancées. Aussi, tout Data Scientist doit-il aujourd’hui maitriser l’implémentation d’outils statistiques sous R pour réaliser des analyses non ponctuelles et inférentielles paramétriques ou de données uni ou multivariées pour tous les domaines dans le service, l’industrie ou encore la RetD. Cette formation avancée permettra aux participants de maitriser R et ainsi d’être à même d’analyser tous types de données dans leurs projets Big Data.

Arkesys
MiniTab - Statistiques notions fondamentales, tests d’hypothèses et traitement des petits échantillonsPar Arkesys

La formation en quelques mots

Dans ce module de formation, nous proposons de baser notre pédagogie autour des thèmes suivants :

Au-delà des compétences statistiques pures, l'important dans ce type de formation est de comprendre les mécanismes fondamentaux présents dans la plupart des manipulations des outils statistiques :
D'une façon générale, ces mécanismes sont les suivants :

Par exemple, dans le calcul d'un écart-type, élément clé présent dans un grand nombre de méthodes statistiques, il nous paraît plus important d'appréhender le sens physique de l'écart-type plus que la formule mathématique en traitant les points suivants :

Spécificités des petits échantillons

Cette formation intègre le traitement statistique des petits échantillons.
Cette spécificité nous amène ainsi à aborder certains thèmes tels que :

Thèmes principaux

Jeux de données

Afin de s'approcher au mieux des réalités quotidiennes des praticiens, nous suggérons de nous appuyer pour l'animation pratique de thématiques et surtout de jeux de données reflétant le quotidien des apprenants.
Cet élément est un facteur de réussite pour la formation. Elle permet aux apprenants de :

Il sera donc pertinent que les apprenants puissent réfléchir en amont de la formation à des problématiques, jeux de données ou documents susceptibles d’être utilisés en support lors de la formation.

Outil logiciel

Au-delà de l'apprentissage des thématiques statistiques, la mise en application s'effectuera sur le logiciel MiniTab.
Environ une demi-journée de travail sera donc consacrée à l'apprentissage du logiciel, son ergonomie, la structuration des données permettant aux apprenants d'acquérir l'autonomie sur ce logiciel.

Data Value
Fiabilité et méthodes statistiquesPar Data Value

Acquérir une connaissance méthodologique et pratique de la fiabilité et des méthodes statistiques associées

Afnor compétences
Statistiques de base appliquées à la mesurePar Afnor compétences
  • Choisir des bons tests statistiques
  • Interpréter pertinemment les données recueillies
Nous utilisons les cookies afin de fournir les services et fonctionnalités proposés sur notre site et afin d’améliorer l’expérience de nos utilisateurs. En cliquant sur ”J’ai compris”, vous acceptez l’utilisation de ces cookies.