M2i Formation

Data Visualisation en Open Source

Par M2i Formation

Objectifs

  • Concevoir des modèles de documents adaptés aux besoins métiers de l'entreprise
  • Mettre en oeuvre différentes techniques de visualisation graphique, de mise en récit et de présentation permettant de valoriser les données.

Programme

Jour 1

Introduction et découverte de la grammaire graphique

  • La Data Visualisation
  • Principes théoriques
  • Les types de graphiques
  • Les outils de Data Visualisation
  • Méthodologie de Data Visualisation
  • Exemple client
Exemple de travaux pratiques (à titre indicatif)
  • Cas pratique de Data Visualisation

La Dataviz et le Big Data

  • Introduction au Big Data
  • Principaux acteurs de la Dataviz dans le Big Data
  • Cas d'utilisation "Superset"

Panorama des outils de Data Visualisation

  • Microsoft Excel 2013 / 2016 : nouvelles capacités et limites
  • Logiciels professionnels de Data Visualisation
    • Microsoft Power BI Desktop
    • Tableau Software public
  • Applications en ligne (Software as a Service)
    • RAW Chart

Jour 2

Choisir le graphique en fonction des données et du message à transmettre

  • Représenter
    • Les séries temporelles (courbes et tendances, sparklines)
    • Les proportions (waterfall, treemap, nightingale, diagramme de Venn, Marimekko, Jauge)
    • Les relations (corrélogramme, boxplot, tableaux bulles, nuage de points, nuage de bulles "Trendalyzer")
    • La répartition spatiale (cartes géographiques, cartes choroplèthes, heatmap)
    • Un corpus de texte par un nuage de mots (tag Cloud)

Construire son histoire

  • Raconter l'histoire de vos données
  • Donner vie aux données : émotions et narration de données
  • Modulateurs d'émotion
    • Couleur
    • Langage
    • Autres éléments de conception
  • Considérations sur l'histoire
  • Préparation de l'histoire
Exemple de travaux pratiques (à titre indicatif)
  • Créer une histoire de données dans une présentation statique

Jour 3

Construire son storytelling avec Tableau Software

  • Cas d'utilisation
  • Cas pratiques

Pédagogie

L'évaluation des acquis se fait :

  • En cours de formation, par des études de cas ou des travaux pratiques
  • Et, en fin de formation, par un questionnaire d'auto-évaluation ou une certification (M2i ou éditeur)

Partager cette formationTélécharger au format pdf Ajouter à mes favoris

Formations de la même catégories (5)

Ambient IT
TensorFlowPar Ambient IT

TensorFlow est devenu en un temps record l’un des frameworks de référence pour le Deep Learning et l’Intelligence Artificielle, utilisé aussi bien dans la recherche qu’en entreprise pour des applications en production.

Formez-vous dès maintenant au Framework IA de Référence !

Avec 25K contributeurs, Tensorflow fait partie du TOP 10 des projets les plus suivi actuellement sur GitHub et vous allez découvrir dans cette formation que ce n’est pas un hasard ! Des milliers de personnes contribuent également à ses dépendances, comme Numpy, Pytest, etc.

Découvrez comment résoudre des problèmes difficiles de Machine Learning avec la nouvelle librairie Open Source Tensorflow, le système révolutionnaire de Google d’apprentissage profond. Cette formation pratique vous montre comment construire, et quand utiliser, des architectures d’apprentissage profond. Vous apprendrez comment concevoir des systèmes capables de détecter des objets dans des images, comprendre la parole humaine, analyser la vidéo et prédire certains phénomènes. Nous aborderons ces concepts à travers des exemples pratiques afin que vous puissiez utiliser cette technologie dans vos projets Big Data. La formation AI & Deep Learning avec Tensorflow abordera les réseaux de neurones (convolutional neural networks). Vous maîtriserez également les concepts clés tels que la fonction SoftMax, les réseaux neuronaux à code automatique (Autoencoder Neural Networks), les réseaux récurrents, la machine Boltzmann restreinte (RBM, Restricted Boltzmann Machine).

Comme dans toutes nos formations, celle-ci vous présentera la toute dernière version stable de TensorFlow 2.4, sortie en Janvier 2020 couplée à Python 3.9.

ENI SERVICE
Deep Learning – Mise en oeuvre du traitement des languesPar ENI SERVICE

Cette formation présente les fondamentaux du Deep Learning appliqués au traitement du langage ainsi que les principales techniques utilisées dans l’industrie. Les travaux pratiques s’appuieront sur des données réelles et présenteront des modèles récents. Certains points aborderont des sujets de recherche récents.

Tanit Formation
Machine learning - concepts et mise en oeuvrePar Tanit Formation

Cette formation présente les fondamentaux du Machine Learning ainsi que les principales techniques utilisées dans l'industrie. Les travaux pratiques s'appuieront sur des données réelles.

Ambient IT
Atelier Découverte sur le Deep Learning avec TensorflowPar Ambient IT

Un atelier sur le Deep Learning d’une journée conçu pour les développeurs. Aucune compétence en Python ni en Machine Learning n’est nécessaire pour faire cet atelier. Venez avec votre curiosité et votre envie d’apprendre

Pendant quelques heures, vous allez coder vous-même un réseau de neurones profond pour résoudre une problématique définie d’apprentissage supervisé. Vous allez commencer par coder chaque fonction en python et vous verrez de vos propres yeux comment fonctionne le deep learning sous le capot. Dans un deuxième temps, vous allez refactoriser votre code à l’aide de TensorFlow, la librairie de machine learning la plus utilisée du monde.

Le Machine Learning est un sujet passionnant et en plein essor. Mais pour les développeurs logiciels, ce n’est pas toujours évident de trouver le temps de se lancer dans l’apprentissage de ce domaine, surtout quand on est en poste. Cet atelier a été conçu pour vous faire découvrir les réseaux de neurones profonds et vous permettre de faire vos premiers pas dans ce domaine !

Le Deep Learning est l’une des techniques les plus populaires pour faire du Machine Learning et une journée est suffisante pour acquérir des bonnes bases et vous permettre de mieux structurer votre projet d’apprentissage du vaste domaine qui est le Machine Learning et l’intelligence artificielle.

Pendant quelques heures, vous allez coder vous-même un réseau de neurones profond pour résoudre une problématique définie d’apprentissage supervisé. Vous allez commencer par coder chaque fonction en python et vous verrez de vos propres yeux comment fonctionne le deep learning sous le capot. Dans un deuxième temps, vous allez refactoriser votre code à l’aide de Tensorflow, la librairie de machine learning la plus utilisée du monde.

La plupart de développeurs logiciels tombent dans l’erreur de se spécialiser dans l’utilisation d’un outil, sans connaître le comment et le pourquoi (don’t be a tools user !). Notre objectif n’est pas de vous apprendre à utiliser un outil ou une technologie, mais plutôt de vous faire comprendre la logique derrière celle-ci. Un ingénieur ML doit pouvoir implémenter avec différentes librairies et ne pas être dépendant d’un outil en particulier.

Comme toutes nos formations, celle-ci présentera la dernière version en date de l’outil à savoir TensorFlow 2.4.

ENI SERVICE
Deep Learning – Mise en oeuvrePar ENI SERVICE

Cette formation présente les fondamentaux du Deep Learning ainsi que les principales techniques utilisées dans l’industrie. Les travaux pratiques s’appuieront sur des données réelles et présenteront des modèles récents. Certains points aborderont des sujets de recherche récents.